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In a previous work by one of us (R. Urigu) concerning open quantum systems 
it was remarked that in processes of the type w ---> (Pill), when evaluating the 
information entropy of the environment as the Shannon entropy of the outcome 
probabilities p, in the channels w~, the total information entropy may decrease. 
We remark here that this decrease is easily excluded by requiring a condition of 
quantum modelizability of the environment even with respect to Shannon entropy 
("cybernetic interpretability" of the environment). Further conditions on the 
quantum model of the environment are defined ("maximal observability" and 
"Boolean interpretability"), which are proved to be equivalent, and it turns out 
that, once satisfied in one model, they also are in any model with pure initial 
state; furthermore, these conditions turn out to be equivalent to the condition that 
the process consists of pure operations of the first kind. The relevance to the 
concept of macroscopicity and to the "von Neumann chain" is discussed. 

GENERAL INTRODUCTION 

The purpose of this work is to consider some aspects of the connection 
between macroscopic and quantum structure, especially between Shannon 
entropy and physical (information) entropy. The suggestion came from some 
questions which arose in our previous work (Urigu, 1989, 1993). 

Such questions require some description of theenvironment of a quantum 
system. This is developed in Section 1; Section 1.5 collects the main results, 
especially involving "pure operations of the first kind": such results are a 
consequence of a very close connection between the operations which a 
quantum system undergoes and the concurrent modifications of the 
environment. 
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Section 2 deals with information entropy, which is the main concem of 
the paper; to avoid repetitions the subject is introduced at the beginning of 
that section. 

Discussions and conclusions are developed in the Sections 3 and 4. 

1. DESCRIPTION OF THE ENVIRONMENT 

1.1. External  P r o c e s s e s  

We start from the known treatment of operations, in particular as found 
in Kraus's lecture notes (Kraus, 1983), concerning the description of one 
operation (see also Hellwig and Kraus, 1969, 1970; Kraus, 1971). 

We need some elementary adaptations and developments. In fact for a 
given quantum system we are, as in Ludwig (1961), Ascoli and Urigu (1984), 
Urigu (1989, 1993), and Ascoli (1993), interested in processes where an 
original ensemble w is split into a countable family of ensembles (or channels) 
W I ,  W 2 ,  . . . �9 

w --> ( ~ ) i E l  

with I = { 1, 2 . . . .  }, conditional to unspecified effects on the environment 
occurring with probabilities Pl, P2 . . . .  such that Y~i ~ = 1. 

We may refer to them as "discrete .... scattering" processes, two comple- 
mentary examples being any nondestructive measurement of an observable 
and the splitting of a beam by a partially reflecting mirror. 

Actually, besides the effects conditioning the outgoing channels, there 
is physically also some effect conditioning the ingoing channel (the prepara- 
tion). We prefer to put this latter effect on the same footing as the others: so 
we attach to it an extra-index 0 and we extend the index set I to F = 
{0} U L So we consider a probability ff~ also, which is equal to zero in 
the above-considered "scattering" processes, but may well be considered as 
different from 0, corresponding to a final ensemble poWo, when considering 
"decay" processes. 

So, in conclusion, we consider processes of the type w ---> (~ / / ) iEr  (to 
simplify the notation we drop the 0 index in the initial channel). Hence we 
are interested in models describing "normalized" families ~ = (T~)i~r of 
operations [discrete instruments in the terminology of Davies (1976)] rather 
than single operations. 

Definition 1. Let a given quantum system be described in (H, ~W), where 
H is the Hilbert space and W" the set of the states. Let F = {0, 1, 2 . . . .  } 
(finite or countable). We say that the quantum system undergoes a (discrete) 



Information Entropy and Shannon Entropy 1 6 9 3  

external process, more specifically a (discrete) interaction with a (F-effected) 
environment, whenever it undergoes a process 

w =  w )iEr 

described by a countable family 3- = (T,.)iEr of (completely positive) opera- 
tions (Kraus, 1983) normalized in the sense that 

E w= 1 
iEF  

where W, W/ ~ ~/" and VW ~ W', ~ w  = tr T-(W) (whenever ffi w = 0 we 
mean that W~ may be chosen to be any state) 

In particular, we speak of a scattering process whenever 

VW ~ W, ~ w  = 0 equivalently To(W) = 0 

1.2. Phenomenological Description and Minimal External Boolean 
Model 

As regards the environment, its simplest description, which we call a 
phenomenological description, concerns nothing but the probabilities (~)i~ r 
of the different effects conditioning the ingoing channel and the outgoing 
channels. Hence in this description the environment is characterized by noth- 
ing but the index set F (equivalently I), so that it is considered as a cybernetic 
rather than a physical reality; it is important for the following that this is the 
appropriate framework for the Shannon entropy. 

Such a phenomenological description of  the environment may be hypos- 
tatized by identifying the latter with a classical or macroscopic physical 
system; we prefer the term Boolean system. For instance, we may think of 
F as the set of the memory positions in a computer assisting the experiment. 

Definition 2. For a given finite or countable set F we call a Boolean 
system with phase space F a system whose properties are described by the 
Boolean lattice L b generated by F and whose set of the states ~IV b _C [0, 1] c~d r 
consists of the probabilities p = (P;)~r on F. We call ~,- the probability 
concentrated on i e F, so that 

Vp ~ cWb, P ---- E Pi ~i 
i 

Definition 3. For a given quantum system described in (H, ~ undergoing 
a discrete external process described by 3- = (Ti)i~r (Definition 1), we call 
minimal Boolean model of the environment, equivalently associated to 3-, 
the Boolean system (Definition 2) that has phase space F, which, VW ~ ~t/', 
undergoes the process 

CWb ~ c~b" p = 80 --'~ ~W = ~ ffiW~i = ~ tr(Ti(W))8i 
i i 
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1.3. External Quantum Systems 

If one is interested in more detail in the states of the environment, more 
complex models are required. We are not interested here in more complex 
Boolean models. The reference to Boolean (classical) systems may be shifted 
one step toward the yon Neumann chain by requiring, in analogy to Hellwig 
and Kraus's description of one operation, that the environment be modelizable 
as an "external quantum system" according to the next definition. In this 
definition, of course, we pay attention to the final states of the external system, 
too, under the assumption that the measurement it undergoes is perfect. 

Definition 4. For a given quantum system described in (H, ~4/') we speak 
of a [finally (perfectly) measured] (F-effected) external quantum system, with 
F = {0, 1, 2 . . . .  } referring to a model (H' ,  U, ~ ' )  consisting of: 

�9 A quantum system which is described in a Hilbert space H '  and the 
set of whose states we call ~ 

�9 A unitary evolution U in the space H = H | H '  in which the 
composite system is described. 

�9 A discrete decomposition of the identity ~ '  = (P~),~r in H ' .  

For a given initial state W' of the external system, we define the induced 
(discrete) external process described by ~- = (T/)i~r as the external process 
that is conditioned by the family of effects of the external system described 
by (P~)iEF. 

We are also interested in the family ~/" = (T~)i~r of operations from 
~4 c to ~/" which leads to the final states of  the external system after it has 
undergone a perfect nondestructive measurement of ~ '  = (P~),~r. 

That is, explicitly, with 

W = U(W | W')U*, Vi ~ F Ti(W) = (I O P~)W(I | e~) (1) 

~- and ~" are expressed by (tr ~ and tr' being in H the trace operations with 
respect to H and H', respectively) 

Vi ~ F T,: W ---> T,-(W) = tr' T,(W) = tr ' (( l  | P~)W) (2) 

Vi ~ F T': W --> T~(W) = tr ~ T,(W) = P~(tr ~ W)P~ (3) 

so that finally the compound system undergoes the evolution 

(W, W') ---) ((T/(W), T~(W)))i~r = ((~wWi, ff/,w~//))i~r 

with F, w = tr T/(W) = tr T~(W) = tr T(W), Y.,.~c F, -w = 1, where, whenever 
~ w  = O, it is meant that W~ is chosen arbitrarily within W and W~ within 

- -  ! 

~1/" with W~ --< Pi. 
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Clearly, the set of the final states of a finally measured external quantum 
system is included in the set of the states of a quantum system with superselec- 
tion rules described in (H'i)i~r, with HI = im P~. Actually something more 
may be said: 

Propos i t ion  1. For any finally measured external quantum system (Defi- 
nition 4) the final states are naturally embedded in the set of the states of a 
quantum system with superselection rules described in (KI = ~ ' H  '~ ~ i  )iEF, where 

V i ~  F K I  = o ' i n '  = ~ im T ' i (W)  C_ n ' i  = e ' i n '  
W~W 

the lattice whose properties we call L e and the set whose states eW'e 
(R+~lf~)ie F, where ~t/'~ denotes the set of the states on K'i. More specifically, 
if L b denotes the lattice of the minimal Boolean model associated to ~- 
(Definition 3), the mapping 

i ~ F--->K'i  = Q'~H' 

characterizes an embedding of L b into L e satisfying 

L b --> L e is such that VW e ~ Vi ~ F ~/.w = tr Ti(W) 

= t r ( ( l  ~ e ' i ) W )  

Whenever, furthermore, W' -< Q~, the process undergone by the external 
system is embedded into a process within 24/'e: 

V f  e --> Vii'e: W ' ~ o  = (~ ioW') i~r  ---> (T ' i (W) ) i~r  = (ff/,w~,-)i~r 

1.4. Quantum Models of the Environment of an External Process 

According to Definition 4, any quantum model of the environment 
characterizes an external process described by a suitable family if- of opera- 
tions. The converse question, whether any given external process arises from 
a suitable quantum model of the environment, is answered by the equivalence 
of conditions 1 and 3 of the next proposition, which easily adapts to the 
problem considered here well-known results (Kraus, 1983) separately con- 
cerning the equivalence of conditions 1, 2 and 2, 3 in the case of one operation. 

Propos i t ion  2. For a given quantum system described in (H, ~14f), let 
~- = (T,-)i~r be a family of positive linear mappings in the state space V" of 
H (Davies, 1976). Then the following conditions are equivalent 

1. ~- = (T/)ie F describes an external process (Definition 1), i.e., is a 
"normalized" family of completely positive operators. 
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2. Any T~ e 3" may be expressed by 

T~: W ---) Ti(W) = ~ AxWA*~ (4) 
h e N i  

where Vi E F, (A~)~r i is a countable family of bounded operators 
such that 

E E A~ax = 1 
i ~ F  k ~ N  i 

3. 3- allows an external (finally measured) quantum model (Defini- 
tion 4). 

The implications 3 ~ 2 (at least in part) and 2 ~ 3 are justified by the 
constructions implied in the next Propositions 3 and 4, respectively, which 
chiefly introduce in the most concise way the notations and the expressions 
required in this paper. Actually, Proposition 3 refers to the case in which the 
initial state W' of the external quantum system is pure with W' ~ P~: this 
case is the one we shall be mostly concerned with in the rest of  the paper, 
as it corresponds to initial entropy S' = 0; the condition W' <- P~ expresses 
the requirement that the initial state be conditioned by the effect described 
by P~ and it does not amount to a restriction in what follows, due to Remark 
2 before Definition 6. 

Proposition 3. Let (H' ,  U, ~ ' )  describe a finally measured external 
quantum system according to Definition 4. 

Let us consider and label in H '  an orthonormal basis ( e ~ ) h E  N in accord 
with the following scheme (here h is a "two-figures" index, N = Ui~rNi): 

spans P~)H' P'~ H'  P~ H'  . . .  (a) 

basis vectors e~l, ' . . . .  "'" (b) e 0 2 ,  . . . e l l ,  e l 2 ,  . . . e 2 1 ,  e 2 2 ,  . . . 

index subsets No Nl  N2 "-- (c) 

Let the operators H = H | H '  be represented by means of matrices of 
operators in H according to the decomposition 

H -  (~ (H| 
h,~N 

Then, in the case of an external quantum system with pure initial state such 
! 

that W' = (W') 2 -< P~, let us choose e0~ so that 

l e~l) (e~, I --- W' 

and let us call (Ax) = (Ux0) the first column of  the matrix (Ux,) representing U: 

Vh = N  Ax = Ux0 (5) 
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Then the operator W = U(W | W')U* [see (1)] is found to be represented 
by the matrix 

(Wx~) = (UxoWU*o) = (AxWA*) 

Hence [see ( 1 ) - ( 3 ) ]  

V i e F  V~., ~ e Ni 

V i ~ F  

( T , ( W ) ) ~ .  = 

T , ( W )  = 

((I | P[)W(I | P[))xr 

Wx~, = AxWA* 

tr '((I @ P/)W) 

A~, WA~ 
k ~ N i  

(6) 

(7) 

(8) 

B 

V i ~  F Vh, p~ ~ Ni (T[(W))x~ = tr(Wx~) 

= tr(A• = tr(A*AxW) (9) 

The above expressions for the Ti, T~, and T'i arise through an elementary 
calculation, due to the matrix representation of the operators that is described 
above (see work by Hellwig and Kraus cited above), and in particular the 
second one may be used as a step in the justification of the implication 3 
2 of Proposition 2. 

In the next, converse proposition, as well as in the subsequent Theorem 1, 
we explicitly emphasize the important case in which the following Condition 1 
on ~- = (T/)i~r is satisfied, because then some statements are simplified. 

Condition 1. The external process (Definition 1) described by the family 
of operations ~- = (T3,.~r undergone by a given quantum system described 
in (H, W): 

�9 is a scattering process (To = 0) 
�9 or the Hilbert space H is finite-dimensional 
�9 or, more generally, the T/may be expressed by T/(W) = ~iaNi AxWA'~ 

[see (4)], where at least one of the Ax, say A01 (we are using "two- 
figure" indices), allows a v o n  Neumann polar decomposition A0~ = 
U 0 1 ~  with unitary Uov 

We may now state the converse statement of Proposition 3. 

Proposition 4. Conversely, let a given quantum system described in (H, 
W) undergo an external process described by ~- = (T/)i~r, with F = {0, 1, 
2 . . . .  } (Definition 1). Let each T,- be expressed as in condition 2 of Proposition 
2 by T/(W) = EX~Ni AxWA'L the index subsets At,. partitioning an index set 
N, as displayed in line (c) of the scheme of Proposition 3 (h being a "two- 
figure" index). 
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�9 If the simplifying Condition 1 is satisfied, let us take a Hilbert space 
H '  spanned by an orthonormal basis (e;,)• indexed by h ~ N [line (b) in 
the above scheme] and in H '  let us choose P~, Pi, P~ . . . .  according to line 
(a) of the scheme and put ~ '  = (P'i)i~r. Let us call M the column matrix 
constructed with the operators Ao2, Ao3 . . . . .  A~ ~, A~2, A~3 . . . .  (we are using 
"two-figure" indexes) and let/-/01 be the unitary operator entering the polar 
decomposition of Am (see Condition 1); let us define [in analogy to the 
construction of Hellwig and Kraus (1969) concerning two "complementary" 
operations; see Urigu (1989)], the operator U in H = H | H '  (which is 
known to be unitary) 

, / l xeH - s~,~* (10) 

Let us choose W' = le~l}(e~ll. 
�9 In general, that is, even when Condition 1 is not satisfied, let us [in 

analogy to Kraus (1983)] add in the above construction of H '  an extra 
dimension with basis vector e~o to be included within P~H' (so that 00 
No); let us include A0b too, in the above definition of M and define on H = 
H |  

Let us choose W' = le~o)(e~ol. 

Inert -- ~Sa* (11) 

Then these definitions complete in any case the characterization of a 
finally measured external quantum system (H', U, ~ ' )  which, with the pure 
initial state W', just induces the given family 3- of operations as expressed 
by formula (8) of Proposition 3. 

We remark that even when 3 does not satisfy Condition 1 and i = 0, 
formulas (7)-(9) of Proposition 3 still hold because the additional term due 
to the extra dimension is easily seen to be On by extending (6) to the extra 
dimension and using the fact that the first element of the matrix (11) is On. 

1.5. Environment of "First-Kind External Processes" 

The main results of Section 1 of this paper are arranged within the next 
Definition 5-7  and the next Theorem 1. 

In the three definitions, concerning a given external process described 
by 3- = (T/)i~r, three possible properties of 3- (we also speak of properties 
of the environment of the process) are defined through three corresponding 
requirements on the finally measured quantum models of ~- (Definition 4 
and Proposition 3), such definitions being justified because (a) Proposition 
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4 ensures that the appropriate quantum models of ~ exist, and (b) the proof 
after Theorem 1 ensures that, whenever a quantum model of ~ satisfying 
any one of the three requirements exists, then all the quantum models of ~- 
with pure initial state W' satisfy the same requirement. 

Definition 5. Let a given quantum system described in (H, ~/') undergo 
an external interaction W---) (Ti(W))i~r, F = {0, 1, 2 . . . .  } with a F-effected 
environment (Definition 1). 

We say that (in the process) the environment satisfies maximal observ- 
ability whenever equivalently (see the proof after Theorem 1): 

la. In some quantum model of ~- = (T,)i~r with pure initial state W' 
(Definition 4) the final states (Ti(W))i~r of the compound system 
[formula (1)], which are conditioned by the effects described by the 
orthogonal projectors (P'i)i~r, may also be conditioned by the effects 
described by one-dimensional orthogonal projectors QI <-- P~, that 
is, with W = U(W | W')U*, 

Vi �9 F VW e 

Ti(W) = (I | P:)W(I @ P~) = (I | Q:)W(I | Q:) 

= tr'((l | Q;)W) | Q / =  T~(W) ~ a~ (12) 

lb. In all quantum models of ff with pure initial state W' the same condi- 
tion holds. 

Remark 1. It turns out from the proof after Theorem 1 that, if the Q'i 
satisfying the above condition exist, then they coincide with those defined 
in Proposition 1. 

The formulation of the next definition implies the following remark: 

Remark 2. For a given external process described by ~-, let (H',  U, 9 ' )  
with pure initial state W' be a quantum model of ~- (Definition 4). Then, 
for a given one-dimensional projector Q~ in H',  by modifying U only, we 
obtain a new external quantum system (H' ,  fJ, 9 ' )  such that, with the initial 
state if" = Q~, it induces the same families of operations ~- and ~-'. 

In fact, if U' is any unitary operator in H' such that W' = U'ITV'U'*, 
by simply taking U = U(1 | (]'), one obtains in the new model the same 
final state W [formula (1)], hence the same families ~- and ~-'. 

Definition 6. Let a given quantum system described in (H, ~ )  undergo 
an external interaction W--> (Ti(W))i~r, F = {0, l, 2 . . . .  } with a F-effected 
environment (Definition 1). 
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We say that (in the process) the environment satisfies Boolean interpret- 
ability (or macroscopic or more improperly classical interpretability) when- 
ever equivalently (see the proof after Theorem 1): 

2a. In some quantum model (H' ,  U, ~ ' )  of  ~ = (T~)/~r (Definition 
4), with reference to Proposition 1, the subspaces (Q'i) of H' 
introduced there are one-dimensional, that is, 

Vi ~ F VW ~ W T; (W)=~WQ[ (13) 

(namely, the T~ are degenerate pure operations), equivalently the 
embedding L b --~ L e induced by the mapping i ~ F ~ K~ = Q~H' 
(see Proposition 1) may be reduced to an identification L b = U;  
we require W' = Q;, too. 

2b. In all quantum models (H' ,  U, ~ ' )  of  ~- with pure initial state 
W', after a suitable adjustment of the unitary operator U (see 
Remark 2) the same condition holds. 

Remark 3. Concerning condition 2a of Boolean interpretability, we 
remark that the identification L b = L e which is required also implements an 
identification W b = We: more precisely, (H ' ,  IJ, ~ ' )  with the initial state 
i f"  = Q; (see Remark 2) supplies a quantum model of the environment in 
the strong sense that the mapping i ---) K~ = Q'iH' provides an identification 
j of L b U ~1/"b and L e to 34 ce satisfying 

) 
j: L b tO 34/'b ~ L e tO ~1/"e is such that 

the Boolean process p = go ---) ~w 
is identified with ,I, j ,I, j 
the quantum process W' = Q; ~ (T~(W)) 

Definition 7. Let a given quantum system described in (H, ~ undergo 
an external interaction W ~ (T,.(W))i~r, F --- {0, 1, 2 . . . .  } with a F-effected 
environment (Definition 1). 

We say that (in the process) the environment satisfies cybernetic inter- 
pretability or the Shannon entropy has a physical meaning (compare with 
Proposition 6 of that subsection 2.3) whenever equivalently (see the proof 
after Theorem 1): 

3a. In some quantum model of ~ = (T,.)i~r with initial entropy S'  = 
0, equivalently with pure initial state W' (Definition 4), for any 
initial state W of  the given system the final states T~(W) of  the 
external system in all the channels are pure. 

3b. In all quantum models of ff with initial entropy S'  = 0, equivalently 
with pure initial state W', the same condition holds. 
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We also use the following terminology: 

Definition 8. Let a given quantum system described in (H, W') undergo 
an external process described by 3- = (T;)i~r with F = {0, 1, 2 . . . .  }. We 
speak of a process of  the first kind whenever each 7],. is pure of the first kind, 
that is it may be expressed by 

Vi ~ F Ti: W ----) Ti(W) = AiWA~' (Ai bounded operators) 

Theorem 1. Let a given quantum system undergo an external process 
(Definition 1). Then, with reference to Definitions 5-8, the following condi- 
tions are equivalent: 

0. The external process is of the first kind. 
1. In the process the environment satisfies maximal observability. 
2. In the process the environment satisfies Boolean interpretability. 
3. In the process the environment satisfies cybernetic interpretability or 

the Shannon entropy has a physical meaning. 
Actually, whenever these conditions are satisfied, there exists a quantum 

model of the environment (H' ,  U, ~ ' ) ,  9 ~' = (P'i)i~r (Definition 4) with a 
pure initial state W' such that (a) if the external process satisfies Condition 
1 (before Proposition 4), then the P " s  are one-dimensional, and (b) in general 
they also are one-dimensional, except for Pr, being two-dimensional. 

An Example. Before proceeding to the required proofs, let us show a 
simple example. For the given trivial process whose simplest model has 
~ '  = {Pr} with one-dimensional Pr, a model with two-dimensional P6 is 
exhibited, so as to explicitly verify that the projector Q6 on Y,w~w im Tr(W) 
(see Proposition 1) still remains one-dimensional: hence Q6 :/: Pr, 

Let us refer to the trivial one-channel decay process, where F = {0} and 
3- consists of the identical operation W---> To(W) = Wonly. Then, in the simplest 
model, constructed according to the prescription of Proposition 3, one has 

H ' =  C, V = ln~c, ~ ' =  {P~} = {1}, 

W' = P ~ =  1, W = W @ 1, T~(W) = 1 

So in this model, with reference to Proposition 1, one has K~ = Ew~w im 
T~(W) = a ~ n '  = P~H' = H' .  

Let us construct a model of the same trivial process where this equality 
does not hold. Let us choose 

H '  = C 2 with the canonical basis (e~l, e~2) 

U = 1 | 13z [31 } [~1, ~2 ~ C, I~112 + 1[~2 [2 = 1 
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Then 

~13113~' 13113~'~ (14) 
T0(W) = (t | e~)W(t | e6) = W = w | \13:13~' 1~213 U 

= W | a~ = (I | Q6)W(I | Q~) (15) 

where Q6 turns out to be the orthogonal one-dimensional projector on ~31e61 + 
132e62. Hence 

To(W) = tr'(T0(W)) = W, T~(W) = tr~ = Q~ 

Thus, with reference to Proposition 1, we can see that in this model 
K6 = Ew~w im T~(W) = Q~H' --/: P6H' = H', so that conditions la, 2a, 
3a of Definitions 5, 6, and 7 are satisfied with Q~ ~ P6. Moreover, with 
reference to Remark 2 and Definition 6, the unitary operator U may be 
adjusted to (J = 1,| so as to obtain a new quantum model such that with 
the initial state I~" = Q6 the same operations To and T6 are induced. 

The example may be physically interpreted as describing a beam of 
light hitting a splitter whose outputs are afterward rejoined without observa- 
tion (e.g., Michelson interferometer); were the two outputs to be rejoined after 
an observation, then the given operation To would be changed, specifically to 
a nonpure operation). 

Proof. We prove here the equivalence of the seven conditions 0 of 
Theorem 1, la, lb of Definition 5, 2a, 2b of Definition 6, and 3a, 3b of 
Definition 7, and we also prove the last statement of Theorem 1. 

We first prove the equivalence of la, 2a, 3a, which concern the existence 
of quantum models of ~ with definite properties. We use the fact that Remark 
2 allows to satisfy requirement W' = Q6 in 2a in any case. 

�9 It is easily seen that la ~ 2a. In fact, according to la of Definition 5, 

Vi ~ F VW ~ %i c Ti(W) = (I | Q'i)W(l | Q'i) with ID Q~ - e~ 

Taking the partial trace with respect to H [as from ( l )  to (3)], we immedi- 
ately obtain 

T'(W) = tr ~ Ti(W) = tr~ | Q') = ~WQ, 

so that 2a of Definition 6 is satisfied. 
�9 Let us now compare conditions 2a and 3a. We see that 2a ~ 3a as a 

particular case: in fact 2a of  Definition 6 may be expressed as stating that 
for any channel i the final states T'i(W) of  the environment, which both 
conditions 2a and 3a (of Definition 7) require to be pure, actually depend on 
the initial state W of the given system only through the numerical factors ~ w. 
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�9 But we may see that 3a ~ 2a, too, that is, if 3a holds, then for any i 
the one-dimensional subspaces im TI(W) do not depend on W: in fact, as 
the mapping from ~V into ~ W ---> T'i(W) is linear, if for some channel i 
we had W1 ---> T'~(WO --k 0 and W2 --~ T~(W2) :/: 0 with im T~(WO #: im 
T'~(W2), then any proper mixture W of Wl and W2 would be mapped into a 
proper mixture [of the pure states T~(W1) and T~(W2)], contrary to condition 
3a, which has been assumed. 

Let us now prove that 2a ~ la. Let (H' ,  U, ~ ' )  with a given pure 
initial state W' (Definition 4) be a quantum model of the external system 
satisfying condition 2a of Definition 6. Let us refer to the construction in 
Proposition 3: as Vi �9 F, Q'i ~ P~ (see Proposition 1), we may choose in 
H '  the orthonormal basis (e~,)• introduced there so that 

t = t = with e~ eil Vi �9 F Ce~i im Q~ 

Then formula (13) of Definition 6 may be expressed as 

Vi �9 F VX, ~ ~ Ni ~/W �9 $t/" (T;(W))x~ = g•215 w (16) 

Let us now refer to the corresponding representation of U as a matrix (Ux~) 
of operators of H, with the notation Ax = Ux0 for its first column, and to 
formula (9) of Proposition 3. Then formula (16) with ~L = h becomes 

VX �9 Ni V W  �9 ~ (T[(W))xx = tr(A~A~,W) = ~• w V i e F  

hence 

Vi �9 F VK �9 Ni Ax=~x• 

So, according to formula (7) of Proposition 3, 

V i e F  VX, p~ e Ni V W  �9 ~4/" 

(T,(W))x~ = ((I | e ' )W(t  | e'))x~ 

= Wx~ = AxWA* = ~xxi~ .x iAkWA~ = ~)~h.i~P, hiWkl,  l, 

= ((I | Q;)W(I  | Q;))~,,. 

so that formula (12) of Definition 5 referring to maximal observability, that 
is, condition la of that definition, is satisfied. 

�9 We may also use the last formula to conclude that 2a (hence even la 
or 3a) ~ 0, external process of the first kind: in fact, for any i �9 F, by 
taking the partial trace tr', we get [see formula (8) of Proposition 3] 

Ti(W) = ~ Ax WA~ = A• i 
heNi 

which clearly represents an operation of the first kind. 
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�9 We may now easily see that, conversely, condition 0 of the theorem, 
external process of the first kind, implies the existence of quantum models 
satisfying the condition of maximal observability 1 a of Definition 5 and even 
the last statement of the theorem. In fact if ~ satisfies condition 0 of the 
theorem, the index subsets (Ni)iEr, as introduced in condition 2 of Proposition 
2, may trivially be chosen to be one-element subsets. Then the explicit 
construction of Proposition 4 leads to an initially and finally measured quan- 
tum model of ~ such that (a) if ~" satisfies the simplifying Condition 1, then 
all the projectors P'i are one-dimensional, and (b) in general they also are, 
except for P~, projecting on the two-dimensional subspace of H '  spanned by 

t t . the basis vectors e0o and e01, still the corresponding final state T0(W) of the 
compound system [see formula (1)] is conditioned also by the one-dimen- 
sional orthogonal projector Q~ < P~ on e~l: in fact, due to the extension of 
(7) to the "extra-dimension" with basis vector e~o and to (11) 

0) 
(T0(W)IH| = ((I | P;)W(I | P~)IH| = AoWA~ 

- -  ! 

= ((I | Q~)W(I | Qo)lt-t| 

So in any case, under condition 0 of the theorem, the model constructed 
according to Proposition 4 is seen to satisfy condition la of Definition 5 
(hence conditions 2a and 3a we have already proved to be equivalent) and 
even the last statement of the theorem. 

�9 What appears less evident is that, once for a given external process a 
quantum model with the properties specified in la, 2a, 3a of Definitions 5, 
6, and 7 is assumed to exist (equivalently, whenever the process is of the 
first kind), then every quantum model with pure W' of the process satisfies 
the same properties, that is, conditions lb, 2b, 3b hold. With reference to 
this, let us prove the implication 0 ~ lb. The main tool is the remarkable 
Lemma of Hellwig and Kraus (1969), which leads to the explicit form and 
classification of the (completely continuous) pure operations. 

Let (H',  U, ~ ' )  with a pure initial state W' describe any quantum model 
inducing a pure first-kind process 0-. Then, for any initial state W of the 
given system, let us refer to the representation introduced in Proposition 3 
to express its final states T/(W); let in particular W = If)(fl, with f E H be 
any pure state: then we get, from formula (8) there, 

T/: W = If)(fl  ~ Ti(W)= ~ A• = ~ IAxf)(Axfl  
k~-Ni kENi 

As T~ is a pure operation, T,.(W) has to be a multiple of a one-dimensional 
projector in H. Then the extremality of the one-dimensional projectors within 
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the cone of the positive linear operators leads us to state that 

V f  e n Vh e N i a x f  = %( f )g ( f ) ,  eta(f) e C 

where g is an operator in H independent on h. At this point let us express 
the Hellwig-Kraus Lemma to be used, complemented with its connession 
with pure operations. 

Lemma 1 (Hellwig-Kraus). Let (A0 be a family of nonzero linear 
operators of a Hilbert space H such that 

~/f e n VX Axf = etx(f)g(f), eta(f) e C 

where g is an operator in H independent of k. Then one of the following 
alternatives holds: 

(i) Vh, Ax = etxB, with % e C and B linear operator in H, equivalently 
the operation T: W --~ T(W) = ~,xAxWA~ = AWA* [with a = etB, et = 
~ ,  so that Ax = (et• is (by definition) of the first kind. 

(ii) Vh, Ax = Ig)(fxl with g, fx e H and at least two f• linearly 
independent, equivalently the operation T: W --~ T(W) = Ex Ax WA'~ = 
tr(WD) lg)(gl with D a positive, bounded, linear operator in H, is (by definition) 
of the second kind. 

The statements about T(W) of course also require the sums to be 
convergent. 

As in our case the operations are supposed to be of the first kind, 
alternative (i) occurs: then, for any fixed i e F, by calling Ai the operator 
A of the lemma, we obtain from formulas (7) and (8) of Proposition 3, 

= P i ) W ( l  ~ Pi))xp. = AxWA* VX, It, ~ Ni (Ti(W))xo. ((I t~ ' - -  ' 

1 
AlWAy" ~l'-" ~ OtxOt* 

veNi veNi Iki.L 

= (T/(W) | Q')x• 

so that, according to formula (12) of Definition 5, the operation Ti which is 
conditioned by the projector P~ is conditioned by the one-dimensional projec- 
tor Q~ on Y~ENi %e'~, too: hence the arbitrary quantum model with pure W' 
inducing ~- which has been considered satisfies formula (12) of Definition 
5 expressing the condition of maximal observability. 

Then, as argued in the first steps of the proof, the model even satisfies 
the conditions of Boolean interpretability and cybernetic interpretability, so 
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that the deduction of the equivalence of the seven conditions displayed at 
the beginning of the proof is completed. 

2. CYBERNETIC INTERPRETABILITY OF THE 
ENVIRONMENT 

2.1. Introduction 

Let us identify, at first without discussion, the information entropy of 
any given quantum system with the quantum-theoretic von Neumann entropy 

S(W) = tr s(W) with s(x) = - x  lg x 

(extended continuously to x = 0) (17) 

The grounds of this identification are analyzed in some detail in the discussion 
of Section 3.1. 

Referring as in Section 1.1 to processes where, for a given quantum 
system, an original ensemble w splits into channels wi, we consider as f inal 
entropy S(W) of the given system the average entropy of the channels or 
conditional entropy 

= = - F , s ( w , )  

ieF i~F 

In a previous work (Ascoli and Urigu, 1984) we derived a tendency to 
decrease for the entropy of the given system in pure discrete external processes 
(processes transforming pure states into pure states in each channel): 

for pure ~- S c <-- S (18) 

(and one result of the present work is to clarify the meaning of the limitation 
to pure external processes and hopefully to reduce its weight). 

Then the natural question arises of what becomes of total entropy, 
including the environment. We already remarked in Section 1.2 that, concern- 
ing the environment, the phenomenological description of the process con- 
cerns nothing but the final probabilities ~ of the unspecified external effects 
conditioning the different channels, so that the entropy concept that may be 
applied to the environment is the Shannon entropy of the probability distribu- 
tion (~) (or "mixing entropy" of the channels) 

ice  

(its initial value S a being considered O, as initially there is one channel). This 
is a cybernetic rather than a physical concept and the environment, when 
endowed with this entropy, appears to be described cybernetically rather than 
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physically, even after introduction of the minimal Boolean model of  Definition 
3. So we adopt the next definition. 

Definition 9. Let a given quantum system undergo an interaction 

w ~ (T,(W) = ~w--~w,.)i~r 

with a F-effected environment, F = {0, 1, 2 . . . .  } (Definition 1). Then we 
correspondingly consider [with s(x) as in (17) above]: 

�9 The transformation of  the (information) entropy of the given system 

S(W) = tr s(W) --~ S(W) = VSc(W) = ~ -~wS(Wii) (19) 
ier 

�9 The transformation of the Shannon entropy (mixing or macroscopic 
entropy) of the environment (equivalently associated to ~-) 

Sb = Z s(pi) = Z S(~oi) ---- 0 "---)-~(W) ~" Z s(piW) (20) 
i~r iEr i~r 

Urigu (1989) compared the initial entropy S with the possible evaluation 
of the total final entropy as ~ + S-~: it was found that (see Definition 8) 

for a first kind ~" ~ - S -- ~ + ~ (2 l) 

the right inequality being not guaranteed for a general pure ~-. Actually a 
simple counterexample has been given, which has been the main spur to this 
research. With H = C 2, a one-channel external process ~- = (T) is considered, 
so that ~ = 0; furthermore, T may be chosen to be a "pure operation of the 
second kind" 

T: W --> T(W) = P, P a 1D orthogonal projector (22) 

The example may be made concrete as in the account of Urigu (1993), from 
which we show Fig. 1: an unpolarized beam of photons is decomposed, by 
a Nicol prism, according to two mutually orthogonal directions of linear 
polarization; then a 90 ~ rotation of the polarization direction is performed 
on one of  the outgoing beams; the re-collection of the beams, disregarding 
their spatial degrees of  freedom, which do not fall within the model, gives 

Nicol prism 
W PWP 

pxwpl U~P~.WP• 7'(W) = P 

i 

Mirror Sugar solulion 

Fig. 1. A device which decreases the polarization entropy of light. 
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rise to a single linearly polarized channel. So unpolarized light is transformed 
into an equal amount of polarized light and we have 

l g 2 = S > ~ + ~ = O  

which contradicts the right inequality in (21). 
Thus this example induces us to submit to criticism the identification 

of the final entropy of the environment with the Shannon entropy S b of the 
outcome probability distribution (~), equivalently with the physical entropy 
of the minimal Boolean model of the environment (Definition 3). 

The guiding criterion we follow to solve the problem is the general 
idea of the universality of quantum theory, which amounts here to requiring 
quantum modelizability of the environment even with respect to information 
entropy as identified with Shannon entropy. Clearly it turns out that, whenever 
such a modelization is possible, the evolution laws of quantum theory ensure 
the tendency to increase of the total information entropy, as outlined in the 
next subsection. 

2.2. Information Entropy in the Quantum Description of the 
Environment 

Definition 10. Let a given quantum system undergo an interaction with 
an external finally measured quantum system (Definition 4) 

(w, w') ~ ((~Wi, ~Wl,-))i~r 

Then we correspondingly consider: 
�9 The transformation of the (information) entropy of  the given system 

as before 

S(W) = tr s(W) ---> VS(W) = S~(W) = ~, ~wS(W~) (23) 
iEF 

�9 The transformation of the (information) entropy of  the external quan- 
tum system 

s' = s (w ' )  ~ s~(w) = ~ ( w )  + -~(w) = ~, ~ws(WI,) + ~, s (~ w) 
i~F i~F 

With these assignments of entropies, the tendency to increase of the 
total information entropy, as guaranteed by the evolution laws of quantum 
theory, may be expressed as follows. 

Proposition 5. Under the assumptions of Definition 10, the total informa- 
tion entropy tends to increase: 

VW �9 W S(W) + S' <- S-Z(W) + -~(W) 

= S---e(W) + -ff~(W) + S~ (25) 
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We express the straightforward proof (see also Urigu, 1993) reporting at each 
step in the upper line the transformation of the states and in the lower line 
the corresponding inequality for entropy; we have (due to entropy additivity 
and to entropy invariance in unitary evolutions) 

f(W~ W ' )  ~ W ~-- W @ W'  ~ "W : U W U  - l _  

[ ( S , S ' )  ~ S S + S' = S <- 

(due to entropy increase associated to perfect non-destructive measurement) 

{ ;  (Ti(W) = (l Q P'i)W(l ~ P'i) ~ piW--~i)ier -"~ 
+ -~ = ~, Fis(Wi) + s(F,) <- 

i e r  i~r 

(due to entropy increase associated to decomposition of the composite system) 

f----> ((T/(W) = tr' T/(W), T'i(W ) = tr 0 Ti(W)))ier 

t_< p~s(W,) + ~ Es(W-~,) + ~ s(~) = ~ + ~ ~ + 
ieF ieF ieF 

2.3. Information Entropy in the Interaction with a "Cybernetically 
Interpretable" Environment 

Let us now compare (20) with (24). We see that quantum modelizability 
of the environment even with respect to information entropy as identified 
with Shannon entropy requires that the environment allows a quantum model 
such that its initial state W' and, for any initial state W of the given system, 
its final states in all the channels be pure. These are just the requirements 
of condition 3 of Theorem i (see Definition 71 as stated in the next proposition, 
which in this way justifies the terminology introduced there and exhibits the 
cybernetic relevance of Theorem 1. 

Proposition 6. Let a given quantum system described in (H, ~ undergo 
an external interaction W---> (Ti(W))i~F, I ~ = {0, 1, 2 . . . .  } with a F-effected 
environment (Definition 1). Then the condition of Definition 7 that the envi- 
ronment satisfies cybernetic interpretability or the Shannon entropy has a 
physical meaning, hence the equivalent conditions of Theorem 1, are satisfied 
if and only if the (finally measured) quantum models of the environment 
with pure initial state also modelize information entropy as identified with 
Shannon entropy, in the sense that initially and finally the information entropy 
of the quantum model coincides with the Shannon entropy of the environ- 
ment; explicitly, 

S' = S b = 0 (26) 

= ~ = ~ s(~) (that is, ~ = 0) (27) 
ieF 
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Actually, according to the proof of Theorem 1, whenever the conditions (26) 
and (27) are satisfied in some quantum model of ~-, they are satisfied in all 
the quantum models of ~ that satisfy the first one of them. 

Thus, in particular, we see that only operations of the first kind satisfy 
the requirement of cybernetic interpretability of the environment we suggested 
as underlying the total information entropy growth as expressed by the right 
inequality (21) (Urigu, 1989). Of course, within the treatment we have devel- 
oped here, this latter inequality immediately follows from Proposition 6, 
using Proposition 5 in the particular case ~-~ = 0 [whereas the left inequality 
(21) arises from the main result of Ascoli and Urigu (1984), which applies 
whenever the T~ are pure operations, not necessarily of the first kind]. 

In the next proposition we explicitly collect these conclusions concerning 
the dynamics of information entropy in the external processes we are consider- 
ing. The equivalent conditions of Theorem 1, to which reference is made, 
suggest a further clarification of the subject, as outlined in the discussion 
which follows. 

Corollary 1. Let a given quantum system undergo an external interaction 

w--> (T,(W) = ~ / / ) i ~ r  

r = {0, 1, 2 . . . .  } with a F-effected environment (Definition 1), such that 
any one of the equivalent conditions of Theorem 1 be satisfied. Then, with 
reference to Definition 9; 

�9 The information entropy of the given quantum system tends to decrease. 
�9 The total information entropy, including the entropy of the environment 

identified as the Shannon entropy of (~w),-~r, tends to increase: 

S~ <_ S <_ S -7 + -~ 

This means 

~, ~ws(W~) <- S(W) < ~, -~wS(W~) + ~, s(-~ w) (28) 
i~F i e r  i~F 

3. DISCUSSION 

3.1. Shannon Entropy and Physical Information Entropy 

The treatment that has been developed here may lead to some insight 
into the relationship between probability Shannon entropy and physical infor- 
mation entropy. 

In fact, as already remarked, Shannon entropy is a cybernetic concept, 
as it does not refer to any physical system, but to a probability distribution 
over a countable set F ("classical" probability). 
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When going over to physical reality there must be some point where 
for certain physical systems it has been decided that the information entropy of 
the system is defined as the Shannon entropy of some probability distribution 
associated with the system. The simplest physical system appears to be a 
"classical" discrete system with phase space F, the Boolean system of Defini- 
tion 2: its physical information entropy S b is identified with the Shannon 
entropy of the outcome probability of a maximal observation on the system: 
S b = Ei~r s (~) .  

To go over to quantum physics, we have to remember that quantum 
probabilities concern macroscopic effects on the environment (Ludwig, 1961, 
1983). So there is no way out from referring to processes W ~ (Ti(W) = 
ff/,-W~)i~r as introduced at the beginning of the paper, then considering the 
Shannon entropy S~ = Zi~r s (~) ,  and finally inducing the physical 
information entropy of the system from this Shannon entropy, which we may 
always interpret as the physical entropy of the minimal Boolean model 
associated with ~ = (T,.)i~r (Definition 3). 

This requires recognizing processes W---) (T,.(W) = ffi W/)i~ r, which may 
be assumed as reversible, so that, referring to Definition 9, information 
entropy may be interpreted as transferred from the given system (entropy 
decrease S - S -7) to the environment (entropy increase S b - S ~ without 
entropy production: that is, S + S b =- -~ + S b. 

A known process of this type is the perfect nondestructive measurement 
associated with a decomposition of the identity ~ = ( P ) i e F ,  provided that it 
is applied to a system in a state W = ~i  PiWPi diagonal with respect to ~ :  
it may be considered a reversible process because remixing of the channels 
(PiWPi)iEF r e s t o r e s  the original state W. The situation simplifies further if 
the initial Shannon entropy of the environment and the final information 
entropy of the given system vanish: S b = 0, ~ = 0. Then the identity S = 
S o holds. The condition S b = 0 is satisfied in any perfect nondestructive 
measurement, as initially the Shannon entropy of the environment, the measur- 
ing instrument, is assumed to be 0; the condition S c = 0 is satisfied, too, 
whenever the observation is maximal, that is, the Pi are one-dimensional: then 
the final states W/in the channels are pure, so that the final entropy of the given 
system (conditional entropy as in Definition 9) is 0: Zi~r -ffiiS(Wi) = O. 

So in a maximal, perfect, nondestructive measurement it is reasonable, 
and it is usually implicitly done, to identify the initial physical information 
entropy S(W)  of the given system with the final Shannon entropy Sb(W) of 
the environment. From this identification the usual yon Neumann expression 
for the entropy of a given quantum system is easily obtained in the known 
way: for a given state W of the system, choose ~ = ~ where ~w is a 
maximal decomposition of the identity diagonalizing W; then the above 
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identification leads to 

S(W) = ~ s(p,) = ~ s(tr(P~W)) = ~ s(tr(P, WP,)) = tr s(W) 
i i i 

Moreover, we remark here that this identification turns out to be consis- 
tent with the possibility of considering succeeding environments. In fact, 
when performing again on the measuring instrument a maximal, perfect, 
nondestructive measurement of its outcome effects, the same probability 
distribution (~) occurs: so this probability distribution and its associated 
Shannon entropy no longer depend on the number and physical realization 
of the subsequent perfect measurements which may be done, that is, they 
become cybernetic rather than physical concepts ("von Neumann chain"). 

3.2. Information Entropy in the Interaction with an External 
Quantum System 

Of course, the counterexample considered in Section 3.1 shows that, 
when considering as before processes of the type W ---> (T/(W) --~Wi)i~r, 
the inequality [see Definition 10 and formula (28)] S -< ~ + S b may be 
violated, so that evaluation of the information entropy of the environment 
as Shannon entropy of the probability distribution (~)i~r leads in general to 
unwanted results. 

The main problem that has been considered here is in which cases, 
besides the perfect nondestructive measurement, such an evaluation of the 
entropy of the environment is allowed. As already stated at the end of Section 
2.1, the general idea that has been followed is universality of quantum theory, 
which amounts here to requiring quantum modelizability of the environment 
with reference not only to the family ~- of operations, but even to the 
Shannon entropy of the probability distribution (P/t)i~F; this means S' = S b 
(see Proposition 6): we have called this condition cybernetic interpretability 
of the environment or condition for the Shannon entropy to have a physical 
meaning. If this condition is satisfied, counterexamples like the one considered 
before are certainly excluded. 

In fact, when considering a quantum model of the environment, due to 
the quantum laws of evolution, information entropy satisfies the inequality 
(25): S + S' -< ~ + S --r = ~7 + ~ + ~ .  Concerning the initial entropy S 
+ S', the processes considered here (Definition 1), according to Proposition 
4, always allow a quantum model with a pure initial state W' of the environ- 
ment, so that the initial entropy S' of the environment vanishes and (25) 
reduces to 

S "<S ~ +  S - ' r=  S ~ +  S '----e+ S b 
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Then it is clear that no guarantee for the preservation of the inequality may 
be given if the term S'-7(W) = E,.~r ~wS(W~) ,  the final conditional entropy 
of the environment, is dropped, as it is when stating S <- S -7 + sb: the device 
of Fig. 1 shows that actually that term cannot in general be dropped. We see 
that the condition that it may be dropped, that is, S-~ = 0, or ~r = ~ ,  is just 
equivalent to the condition of cybernetic interpretability of the environment 
introduced above (see Proposition 6), which therefore is a sufficient condition 
to guarantee the validity of the inequality S <-- S r + S b, expressing the tendency 
to increase of the total information entropy, the entropy of the environment 
being evaluated as Shannon entropy. 

The main result, Theorem 1, consists in necessary and sufficient condi- 
tions for such a cybemetic interpretability of the environment to hold. (We 
actually saw that something less expected occurs: whenever a quantum model 
with vanishing initial entropy satisfying these conditions exists, then all the 
quantum models with vanishing initial entropy satisfy them as well.) 

3.3. In format ion  Entropy  and E n v i r o n m e n t  

The most interesting condition for the above-considered cybernetic inter- 
pretability of the environment is perhaps that all the operations of the family 
3- = (T,.)i~r be of the first kind [that is, expressed by T-(W) = AiWA~,, with 
Ai bounded operators]. As the operation T [formula (22)] performed by the 
device of Fig. 1 is not of the first kind, it certainly does not satisfy this 
condition, so that from the point of view of a quantum description of the 
environment the inequality S -< S ~ + ~ may well be violated, as it is [a 
more detailed account of this counterexample_may be found in Urigu (1993)]. 

Here we recognized the condition ~ = S b that the Shannon entropy has 
a physical meaning as the underlying sufficient physical requirement for the 
inequality S <- S c + S b to hold and we found that operations of the first kind 
only satisfy this requirement. 

Actually, as already stated in Urigu (1989), the condition that the interac- 
tion consists of operations of the first kind also ensures a tendency to decrease 
of the information entropy of the given system [see formula (18) above], as 
a consequence of the main statement of our previous work (Ascoli and Urigu, 
1984), where the required condition was that the operations of the process 
be pure, as is certainly true for operations of the first kind; so the condition 
that the operations be of the first kind implies the double inequality S r - S 
<-- S -x  + S b [see (21) and (28)]. 

A further insight into the subject may come from the equivalent condition 
2 in Theorem 1, which refers to the possibility of constructing a quantum 
model of the environment whose initial and final states can be identified 
with the states of the minimal Boolean model introduced in Definition 3. 
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Actually, according to Proposition 1, any final state in a quantum model of 
the environment may be identified with a state of a quantum system with 
superselection rules, specifically with the family 

(~w-~i)i~r = (T~(W))i~r (29) 

of quantum states on a F-indexed family (K~ = Q'iH')i~r of Hilbert spaces. 
In general the structure of each state ~ cannot be neglected, that is, 

the description of the external process through the family ~- = (T~)i~r of 
operations only, equivalently the description of the environment through its 
Boolean model (Definition 3) only, does not provide enough information on 
the environment. In fact, when considering the information entropy ~ = 
+ S T of the environment, it is just the structure of each state W~ in (29) 
which is taken into account by the term S 'C whose vanishing expresses the 
condition that the Shannon entropy has a physical meaning (condition 3 of 
the same Theorem 1). 

This point of view is further supported by condition 1 in Theorem 1, 
which requires the observation conditioning the channels in the quantum 
model describing the environment to be maximal. 

In conclusion, referring again to condition 0 of Theorem 1 requiring the 
operations to be of the first kind, we may say that operations which are 
not of the first kind correspond to an unadmissibly poor description of the 
environment. When the description is adequate, the double inequality S ~ -< 
S <- -ff + S b [see (21) and (28)] is guaranteed. According to Theorem I, the 
description may be considered as adequate if and only if the operations are 
of the first kind: this condition meets with the original intuition of Haag and 
Kastler (1961) concerning the very concept of operation. 

4. CONCLUSIONS 

4.1. Semi-Boolean (Semimacroscopic) and Boolean (Macroscopic) 
Environments  in Given External  Processes  

Let us first look at the terminology. When applying the term "Boolean" 
to the environment in a given external process, we refer to the lattice of its 
propositions in the description that is considered; we avoid [as does Ludwig 
(1983)] the term "classical," which of course is appropriate from the "kine- 
matical" point of view, because a quantum system is just identified through 
the nonclassical dynamical behavior of its effects on a Booleanly described 
environment; we intend the term Boolean to be equivalent to the term "macro- 
scopic" (which could improperly suggest something necessarily big) which 
Ludwig uses in opposition to the term "microscopic," which he reserves for 
something requiring a quantum description. So, according to the considera- 
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tions that have been developed in this work, it appears that, when considering 
a given quantum system undergoing a process of the type 

W "--> (T/(W) = ~ww//)ier 

the environment, where the effects conditioning the channels take place, 
cannot in general be regarded as Boolean (macroscopic), or its information 
entropy be identical with the Shannon entropy of the probability distribution 
(~)i~r of the effects: we may call it semi-Boolean (semimacroscopic). 

However, according to the nature of the quantum model [which general- 
izes the description of one operation by Hellwig and Kraus (1969; Kraus, 
1983)], the environment always has to be considered in turn as subject to a 
perfect nondestructive measurement by some further environment which may 
now be regarded as truly Boolean (macroscopic) because a perfect nondestruc- 
tive measurement consists of operations of the first kind: so, according to 
Theorem 1 and Proposition 6, the information entropy of this latter environ- 
ment may be identified with the Shannon entropy of the probability distribu- 
tion (~)i~r- 

From this point on, any further environment would remain Boolean 
(macroscopic) with the same information entropy S b = ~iEr s(ffi), because 
the subsequent interactions may be considered as perfect nondestructive 
measurements: we would have the von Neumann chain; we could also speak 
of a cybernetic chain. So, when considering an interaction which is not of 
the first kind, one has to complete the von Neumann chain of succeeding 
environments with a first linking semi-Boolean (semimacroscopic) environ- 
ment which cannot yet be described by a Boolean (macroscopic) model, but 
requires a quantum model. 

4.2. An Interpretation from the Point of View of the Foundations of 
Quantum Physics 

From the point of view of quantum interpretation, the situation may be 
described as follows. 

Physical reality is grasped through macroscopic effects, hence for quan- 
tum systems through effects on the environment. 

Whenever effects take place, some physical possibilities turn into actual 
events. The increase of total information entropy measures such a transition, 
which corresponds to a transition from quantum structure, which describes 
the physical possibilities, to Boolean (macroscopic) structure, which describes 
the actual events. 

Thus in a process of the type W--4 (T/(W) = p-~ wW/w/)iEr some possibilities 
are generally transformed into actual events, but, whenever $ = (T),-~r is 
not of the first kind, according to Proposition 6 (see also Section 3.3), the 
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environment generally still keeps some untransformed possibilities, so that 
it may be regarded as "semi-Boolean" ("semimacroscopic"), but not yet as 
Boolean (macroscopic). Only after it has interacted with a suitable subsequent 
environment may there remain no possibility which can turn into actuality, 
and this new environment may be regarded as Boolean (macroscopic); from 
that point on, information entropy remains constant and the further chain 
may be called cybernetic (see also Ascoli, 1993). 
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